Monomial Orderings, Rewriting Systems, and Gröbner Bases for the Commutator Ideal of a Free Algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial Orderings, Rewriting Systems, and Gröbner Bases for the Commutator Ideal of a Free Algebra

In this paper we consider a free associative algebra on three generators over an arbitrary field K. Given a term ordering on the commutative polynomial ring on three variables over K, we construct uncountably many liftings of this term ordering to a monomial ordering on the free associative algebra. These monomial orderings are total well orderings on the set of monomials, resulting in a set of...

متن کامل

Noncommutative Gröbner Bases for the Commutator Ideal

Let I denote the commutator ideal in the free associative algebra on m variables over an arbitrary field. In this article we prove there are exactly m! finite Gröbner bases for I , and uncountably many infinite Gröbner bases for I with respect to total division orderings. In addition, for m = 3 we give a complete description of its universal Gröbner basis. Let A be a finite set and let K be a f...

متن کامل

A Monomial-Oriented GVW for Computing Gröbner Bases

The GVW algorithm, presented by Gao et al., is a signature-based algorithm for computing Gröbner bases. In this paper, a variant of GVW is presented. This new algorithm is called a monomial-oriented GVW algorithm or mo-GVW algorithm for short. The moGVW algorithm presents a new frame of GVW and regards labeled monomials instead of labeled polynomials as basic elements of the algorithm. Being di...

متن کامل

On Ideal Lattices and Gröbner Bases

In this paper, we draw a connection between ideal lattices and Gröbner bases in the multivariate polynomial rings over integers. We study extension of ideal lattices in Z[x]/〈f〉 (Lyubashevsky & Micciancio, 2006) to ideal lattices in Z[x1, . . . , xn]/a, the multivariate case, where f is a polynomial in Z[X] and a is an ideal in Z[x1, . . . , xn]. Ideal lattices in univariate case are interprete...

متن کامل

Minimal Gröbner bases and the predictable leading monomial property

We focus on Gröbner bases for modules of univariate polynomial vectors over a ring. We identify a useful property, the " predictable leading monomial (PLM) property " that is shared by minimal Gröbner bases of modules in F[x] q , no matter what positional term order is used. The PLM property is useful in a range of applications and can be seen as a strengthening of the wellknown predictable deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1999

ISSN: 0747-7171

DOI: 10.1006/jsco.1998.0245